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Abstract

Diffuse interface methods with compressible fluids, considered through hyperbolic multiphase
flow models, have demonstrated their capability to solve a wide range of complex flow situations
in severe conditions (both high and low speeds). These formulations can deal with the pres-
ence of shock waves, chemical and physical transformations, such as cavitation and detonation.
Compared to existing approaches able to consider compressible materials and interfaces, these
methods are conservative with respect to mixture mass, momentum, energy and are entropy pre-
serving. Thanks to these properties they are very robust. However, in many situations, typically
in low transient conditions, numerical diffusion at material interfaces is excessive. Several ap-
proaches have been developed to lower this weakness. In the present contribution, a specific flux
limiter is proposed and inserted into conventional MUSCL type schemes, in the frame of the dif-
fuse interface formulation of Saurel et al. (2009). With this limiter, interfaces are captured with
3± 1 mesh points depending on the test problem, showing significant improvement in interface
representation compared to conventional limiters, such as for example Superbee. The method
works on both structured and unstructured meshes and its implementation in existing codes is
simple. Computational examples showing method capabilities and accuracy are presented.
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1. Introduction

The present contribution deals with the computation of compressible flows with material
interfaces. As soon as the computational domain involves more than one fluid or material, a
fundamental difficulty arises, as an extra type of discontinuity appears in addition to shocks
and contact discontinuities, present in single phase flows. An interface separates two materials
possibly governed by the same set of balance equations (for example interfaces separating air and
liquid water) but with different thermodynamics. As soon as the interface moves in a given cell,
this latter becomes a mixture cell and the computation of the thermodynamic state becomes
problematic. The fluids have density and internal energy significantly different and different of
the density and internal energy of the mixture in the computational cell. It is not possible to
compute the cell thermodynamics and in particular the pressure without extra information. In
this frame, several approaches have been developed along several decades.

The first class of methods attempts to avoid appearance of mixture cells by maintaining
sharp interface profiles. Lagrangian [1] and ALE methods [2] track interfaces but are limited
by mesh distortions of arbitrary amplitude [3]. Front tracking [4] attempted to reduce these
distortions by considering fixed meshes and moving interfaces, tracked by Lagrangian markers.
This was done to the price of limitations, such as the management of several flow solvers, as well
as interface distortions involving geometrical singularities, resulting in computational issues.

To progress in the direction of simplicity and generality, the Level Set Method [5] was adapted
to compressible fluids and the Ghost Fluid Method [6] was used to compute approximate ther-
modynamic state in mixture cells and particularly pressure. To avoid complexity related to mesh
management with previous methods, the interface was tracked implicitly through an Eulerian
function and two sets of Euler equations were used to store and evolve the fluid variables when
needed, in particular in mixture cells. The Ghost Fluid Method is used to transfer the bound-
ary conditions at interfaces through specific extrapolations from one set of Euler equations to
the other. Although apparently simple, this method still needs efforts to improve robustness in
severe flow conditions, to maintain conservation and address extra physics.

The last family of methods devoted to mixture cells is termed “diffuse interface methods”
(DIM). Two subclasses of DIM are present in the literature. The first one considers physically
diffuse interfaces, having a visco-capillary structure [7]. Here the spatial resolution must be less
than the interface width, i.e. a few nanometers. Also, the equation of state is aimed to describe
phase transition between a liquid and its vapor through a cubic type equation of state. To the
authors’ knowledge, this approach has never shown its capability to compute interfaces between
immiscible fluids (water and air for example). Its seems restricted to small scale computations
of phase transition.

The second subclass of DIM addresses mixture cells having computational origins instead of
physical ones. Pioneering work in this direction was done with VOF methods [8] in the frame of
incompressible fluids. An extra evolution equation is added to the flow model representing the
volume fraction of a given phase. At this level, the model adopts a two-phase description of the
flow, with sub-volumes occupied by the phases and several mass balance equations. Extension
of this approach to compressible fluids was done in [9] and [10].

Contrarily to shocks, captured with the help of some artificial viscosity, the computation of
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interfaces separating materials with different thermodynamics has no viscous regularization. As
shown in [9], [10], [11], the computation of mixture thermodynamics can be achieved trough
relaxation effects in multiphase mixtures. In this frame, as pure materials, far from interfaces,
are governed by hyperbolic systems (Euler equations or more sophisticated models), it is natural
to address hyperbolic models of diffuse interfaces.

The present contribution places in this framework. The simplicity of the implementation of
diffuse interface methods is a key point for the computation of complex flows, with distorted
interfaces, shocks and interactions among them. Insertion of these methods into existing CFD
compressible flow codes is in general easy.

In this frame, Abgrall (1996) [12] considered interfaces separating two ideal gases. Shyue
(1998) [13] and Saurel and Abgrall (1999) [14] considered liquid-gas interfaces and added evo-
lution equations for the Stiffened-Gas equation of state parameters to compute mixture cells’
thermodynamics. These methods were generalized and rationalized with the help of multiphase
flow modeling [9], [10], [15], [16], [17], [18], [19] to cite a few.

In these formulations, the aim is to solve interfaces with a unique set of partial differential
equations (an extended flow model) and a unique hyperbolic solver. The interfaces are captured
and not tracked or reconstructed. Such an approach is mandatory in most compressible flow
computations as interface deformations are arbitrarily complex.

These methods are permanently improved, for example to reduce artificial smearing and
sharpen interfaces [20], [21], [22] as well as to increase the order of approximation and global
accuracy [23].

Extra physics extensions have been addressed as well: chemical reactions [24], phase change
[25], surface tension [26], solid-fluid [27], plastic transformation [28] to cite a few.

The main limitation of these diffuse interface methods is related to their excessive numerical
diffusion, typically four mesh points and even more. This is not problematic for fast transient
flows as the interfaces are in general maintained sharp during sufficiently long time, but becomes
problematic at least for slow transient flows. Several contributions have been done to maintain
or restore sharp interfaces. Shyue (2006) [29] adapted the interface reconstruction method of
Youngs (1982) [30] to a diffuse interface model of compressible fluids. Pantano and coworkers
(2010, 2013) [20],[21] adapted the sharpening method of Olsson and Kreiss (2005) [31] to another
diffuse interface model. Kokh and Lagoutiere (2010) [32] promoted another method based on
a downwind limiter. Shyue and Xiao (2014) [22] examined another limiter, combined with a
hyperbolic tangent reconstruction. It is clear that this research area is very active and that
various directions are under investigation.

The present contribution addresses interface sharpening on unstructured meshes. With the
help of mild modifications of existing flux limiters in conventional MUSCL methods [33], inter-
faces are captured with 3±1 mesh points depending on the test problem, improving significantly
quality of the results.

The paper is organized as follows. The considered flow model is recalled in Section 2. The
hyperbolic flow solver on unstructured meshes is summarized in Section 3. In the frame of un-
structured meshes and MUSCL methods, gradient computations have importance, as detailed in
Section 4. The two main ingredients constituting the present sharpening method are successively
detailed in Sections 5 and 6,
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• Development of a specific flux limiter.

• Coupling with a diffuse interface formulation.

The last sections 7 and 8 deal with validations and illustrations of the method capabilities.

2. Flow model

The almost sharp algorithm developed in the present paper considers the diffuse interface
model of [18]. This model is a pressure non-equilibrium variant of Kapila’s model (2001) [10]
that facilitates consideration of non-conservative terms. The sharpening algorithm can also be
applied to simplified versions of these models, such as for example, models given in [15] and [16]
as well as variants [19]. Furthermore, the method also applies to more general models such as
Baer and Nunziato’s (1986) [34]. The model of reference [18] is recalled hereafter.











































∂αk
∂t

+ u. grad (αk) = µ(pk − pI),

∂ (αkρkek)

∂t
+ div (αkρkeku) + (αkpk) div (u) = −pIµ(pk − pI),

∂ (αkρk)

∂t
+ div (αkρku) = 0,

∂ (ρu)

∂t
+ div

(

ρu⊗ u+ pI
)

= 0,

(2.1)

with k varying from 1 to the number of fluids considered. The notations are conventional in
the two-phase flow literature. αk, ρk, pk, ek denote respectively the volume fraction, density,
pressure and internal energy of phase k. u represents the center of mass velocity. The mixture
internal energy is defined as e =

∑

Ykek where Yk = (αkρk)/ρ denotes the mass fraction of phase
k. The mixture density and pressure are defined as ρ =

∑

αkρk and p =
∑

αkpk. The interfacial
pressure appearing in the right-hand side reads,

pI =

∑ pk
Zk

∑

1
Zk

, (2.2)

where Zk = ρkck denotes the acoustic impedance of fluid k. The entropy equations read,

∂ (αkρksk)

∂t
+ div(αkρksku) =

µ(pI − pk)
2

Tk
. (2.3)

System (2.1) is hyperbolic with wave speeds u, u+ c, u− c with the following definition for the
square sound speed: c2 =

∑

Ykc
2
k. It is convenient to write this system in compact form as,

∂U

∂t
+ div{F (U)}+B(U) div (u) = µS(U), (2.4)
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with,

U =









αk
αkρkek
αkρk
ρu









F (U) =









αku
αkρkeku
αkρku

ρu⊗ u+ pI









B(U) =









−αk
pk
0
0









S(U) =









pk − pI
pI(pI − pk)

0
0









(2.5)
This system is non-conservative and is subject to multiple weak solutions. The aim being to
couple two systems of Euler equations with different thermodynamics across the diffuse interface,
the flow model must tend to the appropriate Euler equations with corresponding jump conditions
on both sides of the interface when the volume fractions tend to 0 and 1. Such aim is reached
by adding Eq. (2.6):

∂ (ρE)

∂t
+ div

[

u (ρE + p)
]

= 0, (2.6)

with E the mixture total energy (E = e + 1
2
u2). In this frame, the equation of state must

correspond to the one of the appropriate phase (as guaranteed by Eq. (2.9)) in the same limit
when the volume fractions tend to 0 and 1.

This “forcing” of appropriate Rankine-Hugoniot conditions is simple and accurate when
dealing with pure (or nearly pure) fluids separated by interfaces. The situation becomes much
more complex when one of the media is a mixture with phases in non-negligible proportions. The
difficulty corresponds to the correct partition of the shock energy among the phases. Progresses
in this direction were done in Saurel et al. (2007) [35], Petitpas et al. (2007) [36], Petitpas et
al. (2009) [24], Schoch et al. (2013) [37], but this is out of the scope of the present paper as the
interfaces considered herein separate two pure (or nearly pure) fluids.

The formulation based on (2.4)-(2.6) with equation of state (EOS) (2.9) tends to the appro-
priate equations on both sides of the interface separating pure fluids, with appropriate shock
relations. But the flow model must also enforce interface conditions of equal pressures and equal
normal velocities. As it involves a single velocity, the second interface condition is immediately
satisfied. To fulfill the condition of equal pressures, stiff pressure relaxation is done through
the pressure relaxation parameter µ that tends to infinity. Such a method is now well accepted
(Saurel and Abgrall, (1999) [9], Saurel et al. (2009) [18]) and its efficiency has been demon-
strated on many examples. This method does not require resolution of stiff ODEs, as will be
summarized later.

At the end of the pressure relaxation step, the volume fractions at mechanical equilibrium
are determined and the mixture EOS (2.9) is used to compute the pressure in agreement with
the total energy evolution (2.6).

As the numerical integration of the non-conservative internal energy equations necessarily
lacks of accuracy, there is no guarantee that the computed internal energies ek are in agreement
with the mixture pressure p and their respective equations of state ek = ek(p, ρk). To enforce
thermodynamic compatibility, the internal energies are reset with the computed pressure at
mechanical equilibrium with the EOS (2.9) and their respective EOSs: ek(p, ρk). The global
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procedure is summarized in System (2.7) where the two stiff relaxations (pressure relaxation
and internal energy reset) are present in the right-hand side.











∂U

∂t
+ div{F (U)}+B(U) div (u) = µS(U) +

1

ǫ
R(U, ρE),

∂ (ρE)

∂t
+ div

[

u (ρE + p)
]

= 0.

(2.7)

Internal energy reset is done through the relaxation vector R(U, ρE) defined as,

R(U, ρE) =













0
αkρk (ek(p, ρk)− ek)

0
0
0













(2.8)

where p is the mixture pressure computed with the mixture total energy,

p = p(U, ρE) =

(

ρE − 1
2
ρu · u

)

−
∑

(

αk(1−ρkbk)γkp∞,k

γk−1

)

∑

(

αk(1−ρkbk)
γk−1

) . (2.9)

The mixture EOS (2.9) can be derived explicitly or implicitly from any convex EOS pk(ρk, ek)
and definition of mixture internal energy ρe =

∑

αkρkek(pk, ρk) under pressure equilibrium
condition p = pk. The mixture EOS (2.9) above is derived from the NASG EOS, used for each
fluid,

pk(ρk, ek) =
(γk − 1) ρkek
1− ρkbk

− γkp∞,k. (2.10)

NASG stands for Noble-Abel-Stiffened-Gas EOS (Le Métayer and Saurel (2016) [38]). It is a
generalization of the Stiffened Gas (SG) EOS, to covolume effects to improve its range of validity
and accuracy, to the price of mild modifications. Associated parameters are given for example
in [38], [39].

The numerical approximation of System (2.7) is achieved with three distinct steps: hyperbolic
evolution, relaxation of the phase pressures and reset of the phase internal energies. Those three
steps are briefly recalled hereafter.

Hyperbolic evolution

At the beginning of this step, the following relation is satisfied at the current time denoted
n,

∑

k

(αkρkek)
n = (ρE)n −

1

2
ρn‖un‖2. (2.11)
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The associated dynamics is driven by the following set of non-conservative equations, describing
the evolution of U as well as the evolution of ρE,











∂U

∂t
+ div{F (U)}+B(U) div (u) = 0,

∂ (ρE)

∂t
+ div

[

u (ρE + p)
]

= 0.

(2.12)

This system is evolved during a time step δt. In the following, the superscript (1) will indicate
the output variables coming from this hyperbolic step. When this latter is fully computed, the
sum of the phase internal energies is in general different from its definition,

∑

k

(αkρkek)
(1) 6= (ρE)(1) −

1

2
ρ(1)‖u(1)‖2.

This feature is particularly true for discontinuous solutions. This inconsistency vanishes with
the following corrections.

Pressure relaxation

At this point, the vector U (1) and (ρE)(1) are available and used as inputs of System (2.13).
During the second step, the phase pressures are relaxed according to,











∂U

∂t
= µS(U),

∂ (ρE)

∂t
= 0.

(2.13)

Rather than solving (2.13) that involves the pressure relaxation rate µ, the combination of the
various ODEs results in the following non-linear algebraic system,























ek

(

p(2), ρ
(2)
k

)

− e
(1)
k − p(2)

(

1

ρ
(2)
k

−
1

ρ
(1)
k

)

= 0,

∑

k

(

(αkρk)
(1)

ρ
(2)
k

)

= 1,

(2.14)

where ρ
(1)
k , (αkρk)

(1) and e
(1)
k come from the previous hyperbolic step. The superscript (2) denotes

here the relaxed pressure state. System (2.14) is solved with Newton’s method [18]. When only
two fluids are considered, an exact solution is available (given here for the Stiffened Gas EOS),

p(2) =
1

2
(A1 + A2 − (p∞,1 + p∞,2)) +

√

1

4
(A2 − A1 − (p∞,2 − p∞,1))

2 + A1A2, (2.15)

with,

A1 =

α
(1)
1

γ1

(

p
(1)
1 + p∞,1

)

α
(1)
1

γ1
+

α
(1)
2

γ2

and A2 =

α
(1)
2

γ2

(

p
(1)
2 + p∞,2

)

α
(1)
1

γ1
+

α
(1)
2

γ2

. (2.16)

7



When ρ
(2)
k are computed, new volume fractions are deduced as α

(2)
k = (αkρk)

(1)

ρ
(2)
k

. However, the

computed phase internal energies at relaxed pressure ek

(

p(2), ρ
(2)
k

)

are, once more, incompatible

with the mixture total energy (in the presence of shocks) and the next and final step attempts
to remedy to this.

Internal energy reset

At this point, the variables coming from the hyperbolic step (1) and the pressure relaxation
one (2) are available. Another relaxation process is achieved, this time regarding the internal
energies of the phases. The corresponding system is then,











∂U

∂t
=

1

ǫ
R(U, ρE),

∂ (ρE)

∂t
= 0,

(2.17)

in the asymptotic limit where ǫ→ 0. During this step, only the phase internal energies are reset
as,

e
(3)
k = ek

(

p(3), ρ
(2)
k

)

. (2.18)

Here the superscript (3) denotes the pressure computed with the mixture EOS (2.9), based on
the mixture total energy (invariant through steps 1-2-3) and the volume fractions after pressure

relaxation (α
(2)
k ). As the internal energies e

(3)
k are computed with the mixture pressure p(3)

through EOS (2.9), those are now compatible with the conservation of the mixture internal
energy,

∑

k

(αkρkek)
(3) = (ρE)(3) −

1

2
ρ(3)‖u(3)‖2.

The time step update is now complete and reads,

Un+1 = U (3) and (ρE)n+1 = (ρE)(3) .

It is worthwhile to note that the variables (αkρk)
n+1 , (ρu)n+1 and (ρE)n+1 are already updated

at the end of the first hyperbolic step. The pressure relaxation step provides the updates of the
volume fractions αn+1

k and the energy reset step restores thermodynamic compatibility between
the EOS (2.9), the mixture energy definition (2.11) and the phase EOSs (2.18).



































(αkρk)
n+1 = (αkρk)

(3) = (αkρk)
(2) =(αkρk)

(1) ,

(ρu)n+1 = (ρu)(3) = (ρu)(2) =(ρu)(1) ,

(ρE)n+1 = (ρE)(3) = (ρE)(2) =(ρE)(1) ,

αn+1
k = α

(3)
k = α

(2)
k ,

en+1
k = e

(3)
k .

(2.19)
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The overall method can thus be summarized as follows. Considering the flow model (2.4)-(2.6),
a quasi-conservative-variable vector U is defined, as well as a primitive-variable vector W ,

U =













αk
αkρkek
αkρk
ρu
ρE













, W =









αk
ρk
pk
u









. (2.20)

and the method summarizes as:

• Solve the Riemann problem of System (2.4)-(2.6) (without relaxation terms) at each cell
boundary with favorite solver. The HLLC solver [40] is recommended as this system in-
volves 3 waves only. Such solver preserves positivity of density, mass and volume fractions.

• Evolve all flow variables with a Godunov type method (or higher order variants).

• Determine the relaxed pressure by solving (2.14).

• Compute the mixture pressure with the mixture equation of state, EOS (2.9).

• Reset the internal energies with the computed pressure from Eq.(2.9) and respective EOSs,
ek = ek(ρk, p). During this step, the internal energies are computed by the mixture pres-
sure, determined itself by the mixture internal energy, computed from the mixture total
energy equation which is conservative and unambiguously updated.

The interface sharpening algorithm developed in the present paper acts only during the
hyperbolic step. The pressure relaxation and reset steps being unchanged and detailed in [18],
the reader is referred to that reference. The hyperbolic step is recalled hereafter and the new
flux limiter, rendering interfaces sharp is presented afterward.

3. Hyperbolic solver on unstructured meshes

To develop the interface sharpening algorithm, numerical resolution of the non-conservative
system (Eqs. (2.4)-(2.6)) has to be addressed. The Godunov-type method given in [18] is
extended hereafter to unstructured meshes. Second-order type extension is done with a MUSCL-
type method summarized hereafter. Denoting by Vi(Pi) and Vj(Pj) two elements with cell centers
Pi and Pj delimited by the boundary Sij (see Fig. 1), the space-time Taylor expansion at the
point Pij , barycenter of Sij, from the point Pi of a primitive variable W reads,

WL(Pij) = W (Pi) + ~rij.∇W (Pi) +△t
∂W (Pi)

∂t
, ~rij =

−−−→
PiPij . (3.1)

Similar expansion at Pij from Pj reads,

WR(Pij) = W (Pj) + ~rji.∇W (Pj) +△t
∂W (Pj)

∂t
, ~rji =

−−−→
PjPij. (3.2)
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P3

P03

P0

P1

P2

P02 P01

W (Pj)W (Pi)

WR(Pij)WL(Pij)

Riemann

Figure 1: Schematic representation of an unstructured mesh made of triangles. • centers of the cells, N centers
of the faces. The Riemann problem is solved on each face of the triangles.

The reconstructed solution at left, WL(Pij) and at right, WR(Pij) are used as initial conditions
for the Riemann problems in order to obtain more accurate numerical fluxes. The MUSCL-
Hancock scheme takes into account both space and time evolution with the following sequence
of computations.

Spatial reconstruction at cell boundaries

The spatial reconstruction step uses the preceding formulas (3.1), (3.2) without the time
derivative, this one being approximated in the next predictor step,

W n
L (Pij) = W n(Pi) + ~rij .∇W

n(Pi), ~rij =
−−−→
PiPij. (3.3)

Similar expansion at Pij from Pj reads,

W n
R(Pij) =W n(Pj) + ~rji.∇W

n(Pj), ~rji =
−−−→
PjPij . (3.4)

Superscript n denotes the current time step. During this step the gradients ∇W n(Pi) and
∇W n(Pj) are computed with the method recalled in Section 4. The primitive variables W
are preferred to quasi-conservative ones U as they preserve uniform velocity and pressure at
interfaces. Extrapolation (3.3) and (3.4) yields a second-order-in-space discretization. At this
time, reconstructed variables are available at left W n

L (Pij) and right W n
R(Pij) of the cell faces.

Half-time step evolution

The cell-center-variable-state vector Un
i is evolved during a half-time step with the conven-

tional Godunov method, requiring Riemann problem resolutions at cell faces,

U
n+1/2
i = Un

i −
△t

2Vi

N faces
∑

j=1

(

SijF
∗n
ij

)

. (3.5)

Superscript ∗ denotes the solution of the Riemann problem. During this step, the primitive
variables at leftW n

L (Pij) and rightW n
R(Pij) (Eqs. (3.3), (3.4)) of cell faces come from the previous

spatial-reconstruction-at-cell-boundary step and are used as initial data of the Riemann problems
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providing the fluxes F ∗n
ij at the cell faces. The non-conservative volume fraction equations are

evolved with the following scheme:

α
n+1/2
k,i = αnk,i −

△t

2Vi

N faces
∑

j=1

Sij

[

(Smαk)
∗n
ij − αnk,i S

∗n
m ij

]

, (3.6)

where Sm denotes the contact wave speed projected along the face normal vector, solution
of the Riemann problem. Regarding the non-conservative internal energy equations, similar
approximation of the corresponding equations is used by assuming the product (αkpk) constant
during the time step,

(αkρkek)
n+1/2
i = (αkρkek)

n
i −

△t

2Vi

N faces
∑

j=1

Sij

[

(αkρkekSm)
∗n
ij + (αkpk)

n
i S

∗n
m ij

]

. (3.7)

The lack of accuracy in the internal energy computation resulting from the present scheme is
not crucial. The internal energies are only used to estimate the pressure of the phases at the
end of the hyperbolic step, before relaxation. The relaxation step gives a first correction to the
internal energies, in agreement with the second law of thermodynamics. A second correction is
made with the help of the mixture total energy and mixture EOS (2.9) [18]. Thereby, a single
value of the pressure is available for the next step and for the various phases.

Full-time step evolution

The previous cell-center and quasi-conservative vector U
n+1/2
i is converted into the primitive

one W
n+1/2
i as this latter is preferable for the extrapolation step:

W
n+1/2
L (Pij) = W n+1/2(Pi) + ~rij .∇W

n(Pi), ~rij =
−−−→
PiPij. (3.8)

Similar expansion at Pij from Pj reads,

W
n+1/2
R (Pij) =W n+1/2(Pj) + ~rji.∇W

n(Pj), ~rji =
−−−→
PjPij . (3.9)

The gradients ∇W n(Pi) and ∇W n(Pj) come from the first spatial reconstruction step and add
robustness to the method as no combination of gradients computed at time tn and tn+1/2 is
made. From the extrapolated variables at left W

n+1/2
L (Pij) and right W

n+1/2
R (Pij), a second

Riemann problem is solved yielding more accurate numerical fluxes. The solution vector is
then evolved during the full-time step with the conventional Godunov method for the various
quasi-conservative variables,

Un+1
i = Un

i −
△t

Vi

N faces
∑

j=1

(

SijF
∗n+1/2
ij

)

, (3.10)
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while spacial care is taken for the non-conservative variables,



























αn+1
k,i = αnk,i −

△t

Vi

N faces
∑

j=1

Sij

[

(Smαk)
∗n+1/2
ij − α

n+1/2
k,i S

∗n+1/2
mij

]

,

(αkρkek)
n+1
i = (αkρkek)

n
i −

△t
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mij
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(3.11)
Then, another pressure relaxation step is done followed by mixture EOS (2.9) pressure compu-
tation and internal energy reset.
This MUSCL-Hancock type scheme is thus summarized in three steps,

• Spatial reconstruction at cell boundaries.

• Half-time step evolution (prediction) followed by pressure relaxation.

• Full-time step evolution followed by another pressure relaxation step.

Figure 2 displays a schematic representation of the procedure. The MUSCL-Hancock scheme
presented previously requires to solve two Riemann problems per time step but only one gradient
computation of the various flow variables. This point is addressed in the following section.

4. Gradient computation on unstructured meshes

A robust and accurate method for the computation of gradient variables is based on least
squares approximation. This method is perhaps the simplest and the cheapest approach on
unstructured grids. It is based on multiple Taylor expansions about Pi and a cloud of neighboring
cells,

Wj = Wi +
−−→
PiPj. ~ex

∂Wi

∂x
+
−−→
PiPj. ~ey

∂Wi

∂y
+
−−→
PiPj. ~ez

∂Wi

∂z
+O

(

‖
−−→
PiPj‖

2
)

= Wi +△xij
∂Wi

∂x
+△yij

∂Wi

∂y
+△zij

∂Wi

∂z
+O

(

‖
−−→
PiPj‖

2
)

(4.1)

Using Eq. (4.1) with a set of neighbors results in the following system:







w1△xi1 · · · w1△ziN
...

. . .
...

wN△xiN · · · wN△ziN











∂Wi

∂x
∂Wi

∂y
∂Wi

∂z



 =







w1 (W1 −Wi)
...

wN (WN −Wi)






⇔ AX = B, (4.2)
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t

W
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W
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Figure 2: Schematic representation of the MUSCL type numerical scheme. At time tn, values at the facesWn
L (Pij)

andWn
R(Pij) (Eqs. (3.3), (3.4)), reconstructed via the gradients ∇Wn(Pi), are used as initial data of a Riemann

problem providing fluxes F ∗n
ij . The solution evolves at time tn+1/2 via the Godunov-type scheme (Eqs. (3.5),

(3.6), (3.7)). At this intermediate time, the previous gradients are used to reconstruct the solution at the faces

W
n+1/2
L (Pij) and W

n+1/2
R (Pij), (Eqs. (3.8), (3.9)). Those states are used as initial data of a second Riemann

problem providing fluxes F
∗n+1/2
ij . Finally, values at cell center Un

i are updated to Un+1

i with Godunov-type

scheme using F
∗n+1/2
ij , (Eqs. (3.10), (3.11)).

with,

wj =
1

△x2ij +△y2ij +△z2ij
j = 1, · · · , N

where N is the number of neighboring elements. The introduction of weights wj allows to
control numerical instabilities (division by small numbers) when the mesh is skewed. In three
dimensions, a minimum of three neighboring elements is necessary to solve the system. When
the number of available neighbors is greater than three, then the system is over-determined
and solution of minimum residual ‖AX − B‖ is addressed. A classical way to solve this over-
determined system is to multiply both sides by the transpose matrix. A square system (the
so-called normal equations) is obtained: AX = B, ATAX = ATB, and the solutions reads,
X = (ATA)−1ATB.

The main issue regarding this methodology is linked with the condition number of the matrix
A, cond(A). If it is big (ill-conditioned) then the system of normal equations ATAX = ATB
yields a condition number even bigger, cond(A)2. A large condition number is highly undesirable
as its numerical solution may be very difficult to achieve accurately. A second approach is to use
a QR decomposition. Q is an orthogonal matrix (QTQ = I) and R is an upper-triangle matrix:

AX = B, QRX = B, RX = QTB, X = R−1QTB.

In this framework, QR decomposition is performed using Gram-Schmidt algorithm. It is
important to note that for non-moving meshes, the factors (ATA)−1AT or R−1QT are computed
once for all at the beginning of the computation, so that the whole least squares method only
yields one matrix-vector product per element.
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The direct neighbors of the considered cell are used. Nevertheless, some configurations may
require to extend the gradient computation to the indirect neighbors. This configuration is
slightly more complex but is sometimes necessary. This situation is depicted in Fig. 3.

P3

P0

P1

P2

P3

P0

P1

P2

P9

P8

P4

P5

P6
P7

Figure 3: Schematic representation of the direct and indirect neighbors of the cell P0 on an unstructured mesh
made of triangles, for gradient computation. The cell of interest P0 is represented as the shaded cell. On the left,
only the direct neighbors are represented as the darker cells. On the right, the indirect neighbors are represented
in addition as the darkest cells.

In the presence of discontinuities, the solution vector cannot be decomposed into Taylor
series. In order to avoid oscillation appearances, the gradients are limited. In this framework,
the Barth and Jespersen (1989) [41] approach is employed. To avoid reconstructed solution at
the face exceeding minimum or maximum values at cell centers on each side of the face (TVD
property consequence), the gradient is scaled by factor Θ. The primitive variables W are used
during this step,

W =









αk
ρk
pk
u









The reconstruction at the center of the face separating Pi and Pj “to the left” becomes,

W lim
ij =Wi +Θi~rij.∇Wi,

with
Θi = min (θ (φij)) , j ∈ neigh(i),

and,
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φij =















Wmax−Wi

2(Wn lim
ij −Wi)

if
(

W n lim
ij −Wi

)

> 0,

Wmin−Wi

2(Wn lim
ij −Wi)

if
(

W n lim
ij −Wi

)

< 0,

1 if
(

W n lim
ij −Wi

)

= 0,

(4.3)

withW n lim
ij = Wi+~rij.∇Wi, the unlimited reconstruction solution andWmax,Wmin respectively

the maximum and minimum value between the current cell and all its direct neighbors.
θ (φij) is limiter dependent. For instance,

θ (φij) = max
[

0, min(βφij, 1), min(φij, β)
]

, (4.4)

gives the Minmod limiter [42] for β = 1 and the Superbee limiter [43] for β = 2. In the
sharpening method that follows, a specific limiter is used for the volume fraction computation
in the vicinity of interfaces only.

5. Development of a new limiter for discontinuities

The present interface-sharpening algorithm consists in a specific flux limiter to insert into
the former MUSCL type scheme. Many gradient limiters are available in the literature in order
to prevent local extrema and sharpen discontinuities. Among them the Minmod, van Leer and
Superbee limiters are often used. The Ultrabee limiter is another one [43], very accurate for
one-dimensional advection of discontinuous profiles. It handles discontinuities in one point only
(see for example Leonard (1991) [44], Toro (1997) [45]).

However, when dealing with smooth functions, the Ultrabee limiter produces unacceptable
results. It adds “negative numerical viscosity” (locally) and results in wrong “steepening” and
“squaring” of the solution profiles.

Nevertheless, flows involving non-miscible fluids present volume fraction discontinuities at
interfaces rendering the Ultrabee limiter an interesting candidate. The Ultrabee limiter has
been intensively used in the sharpening method of Kokh and Lagoutiere (2010) [32]. However,
this method seems restricted to Cartesian grids.

The present paper aims at computing “sharp-but-still-diffuse” interfaces on unstructured
meshes. To this end, a specific limiter is considered and inserted into the compressible two-
phase flow model considered previously.

The sought-after function is aimed to deal with multi-dimensional computations, compressive
enough to sharpen discontinuous profiles, but diffusive enough to ensure stability. As stated in
Sidilkover and Roe (1995) [46], “artificial compression” may be used in multi-dimensional com-
putations to improve the resolution of discontinuities. This feature is not to be used in smooth
regions as some undesirable effects may appear. However it can lead significant improvements
in resolving discontinuous profiles.

The investigation of the “artificial compression or interface sharpening” prompted the work
of this paper. In the present manuscript, several modifications of the Superbee limiter are
examined in order to:
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• Sharpen discontinuities for simple transport equations.

• Maintain stability.

• Work on multi-D with unstructured meshes.

Flux limiters are well understood in 1D (van Leer (1979) [33], Sweby (1984) [47]) but a clear
theory is lacking for multi-dimensional computations. The present investigations are based on
numerical experiments, in one and two dimensions, with and without coupling with the diffuse
interface flow model. Various modifications of the Superbee limiter are considered as option A,
B, C, D, E and F shown in Fig. 5. In this figure, the first-order TVD region is presented as the
shaded region. The TVD property is briefly recalled hereafter, for more details or discussions,
the reader is referred to [45], [47], [48], [49], [50], [51], [52] for example.

Ideally, a second order accuracy is used while guaranteeing that no nonphysical oscillations
arise. The notion of total variation (TV) is a measurement of oscillations in the solutions. The
total variation of a solution Q is defined by,

TV (Qn) =

∞
∑

i=−∞

|Qn
i −Qn

i−1|,

and the method is called total variation diminishing (TVD) if, for any set of data Qn, the values
Qn+1 computed by the method satisfy,

TV (Qn+1) ≤ TV (Qn). (5.1)

The TVD notion was first presented in the original work of Harten (1983) [49] who proposed this
concept to characterize oscillation free schemes. In the same contribution, Harten introduced a
fundamental tool to obtain an algebraic proof that the resulting method is TVD.

Later, the Lax-Wendroff scheme (1960) [53] prompted the work of Sweby (1984) [47] who
introduced the first and second order TVD regions. Lax-Wendroff scheme is known to be non-
TVD and [47] attempted to remedy to this drawback by introducing a function θ(φ). φ is a ratio
of gradient variables, as it will be detailed further.

To design a TVD method, the function θ(φ) should satisfy the following relations,

0 ≤
θ (φ)

φ
≤ 2 and 0 ≤ θ (φ) ≤ 2.

These constraints are rewritten concisely as,

0 ≤ θ(φ) ≤ minmod(2, 2φ). (5.2)

This defines the first-order TVD region in a φ-θ plane. The curve θ(φ) must lie in this region,
shown as the shaded region in Fig. 4.

This graphical analysis of (5.2) was first presented by Sweby (1984) [47], who analyzed a wide
class of flux-limiter methods. In the same reference, Sweby introduced the second-order TVD
region depicted in Fig. 4 as well. According to [47], for any second-order accurate method, it is
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Figure 4: Sweby TVD regions. The shaded region of the left figure represents the Sweby region of first-order
TVD methods. The dashed line θ = 1 (Lax-Wendroff (1960) [53]) and the dashed-dotted line θ = φ (Beam-
Warming (1976)[54]) are displayed and led to the Sweby region of second-order TVD methods [47] represented
as the shaded region of the right figure.
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better to take θ as a convex combination of θ = 1 (Lax-Wendroff (1960) [53]) and θ = φ (Beam-
Warming (1976)[54]). Other choices apparently give too much compression and smooth data
such as a sine wave tends to turn into a square wave as time evolves. Imposing this additional
restriction provides the second-order TVD region of Sweby depicted in Fig. 4.

However, as only discontinuities are aimed to be sharpened in the present framework, those
other choices are to be reconsidered as they may provide compression of discontinuities. In that
sense, the second-order TVD region of Sweby may no longer be a restriction and the first-order
TVD region is to be reconsidered. As this latter goes beyond the second-order area, it may
provide extra compression while remaining TVD. The first numerical experiments are depicted
in Fig. 5.
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Figure 5: Modifications of the Superbee limiter (A, B, C, D, E and F) considered for the various numerical
experiments. The dashed lines represent the various options and the full lines represent the conventional Superbee
limiter. The first-order TVD region is shown as the shaded region.

In the following, one-dimensional advection of a Heaviside function ψ at prescribed velocity
is computed as a reference test. Numerical solutions of this equation are examined in 1D first
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and multi-D secondly. The corresponding advection equation reads,

∂ψ

∂t
+ u

∂ψ

∂x
= 0. (5.3)

Nevertheless, it is demonstrated (see Leveque (1992) [55], Toro (1997) [45] for details) that the
actual equation solved by a Godunov type scheme is,

∂ψ

∂t
+ u

∂ψ

∂x
= ζ

∂2ψ

∂x2
with ζ =

1

2
∆xu (1− |c|) and c =

u∆t

∆x
. (5.4)

The viscous term ζ ∂
2ψ
∂x2

corresponds to the numerical viscosity of the scheme and vanishes when
∆x tends to zero. It also vanishes when |c| = 1, which is only of the academic importance. It
thus appears that both dependence of cell size and CFL numbers have to be considered with
the various experimental limiters. The results of the first test series are given in Fig. 6 with
a CFL number of 0.8. As the present paper is based on MUSCL schemes and unstructured
meshes, gradient computations have to be specified. As mentioned earlier, least squares approx-
imation is appropriate for unstructured meshes and its 1D analogue corresponds to the centered
approximation,

(

∂ψ

∂x

)

i

=
1

2△x
(ψi+1 − ψi−1) , (5.5)

with i denoting the current cell.
All tests presented in Fig. 6 use this approximation for gradient computation and show much

better results than the conventional Superbee limiter thanks to their first order TVD behavior.
While test F tends to Superbee as it is quite close, all other variants present comparable

results and capture the discontinuities with two mesh points.
In the following, it would be interesting to build a limiter which can be reduced to the upper

boundary of the second-order TVD area, that corresponds to the Superbee limiter, and can be
increased to the extreme boundary of the first-order TVD region as well, in order to provide a
class of compressive flux limiters for discontinuities.

To this end, option A is selected as it lies along both first and second order TVD bound-
aries with an intermediate constant region. Figure 7 examines various variants of option A by
experimenting various levels of the plateau region. Those tests are named G, H, I and J and are
presented in Fig. 7. Figure 8 displays the results with CFL = 0.8.

Again, all tests show clear improvements compared to the conventional Superbee limiter. In
the following, this first order TVD boundary (test J) keeps being analyzed by modifying the
mesh size and the CFL number. Figure 9 provides the results obtained with limiter of test J
for meshes of 100, 1000 and 10, 000 cells with CFL = 0.8.

In addition, it is interesting to see the behavior of the present compressive limiter when the
gradients are computed according to the upwind (ψi+1−ψi) and downwind formulas (ψi−ψi−1).
Their ratio,

φi =
ψi − ψi−1

ψi+1 − ψi
, (5.6)
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Figure 6: Comparison of the various limiters A, B, C, D, E and F shown in Fig 5 (full circle symbols •) to the
Superbee limiter (diamond symbols ⋄) for the simple transport of a Heaviside function ψ at prescribed velocity.
The advection speed is 100 m.s−1. The dashed lines represent the initial condition and the full lines represent
the exact solution. Here ∆x = 0.01 m corresponding to 100 cells. The final time is t ≈ 4 ms and CFL = 0.8.
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Figure 8: Comparison of the various limiters G, H, I and J shown in Fig. 7 (full circle symbols •) to the Superbee
limiter (diamond symbols ⋄) for the simple transport of a Heaviside function ψ at prescribed velocity. The
advection speed is 100 m.s−1. The dashed lines represent the initial condition and the full lines represent the
exact solution. Here ∆x = 0.01 m corresponding to 100 cells. The final time is t ≈ 4 ms and CFL = 0.8.
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is used as argument in the limiter as it is the conventional method for one dimensional compu-
tations (see Toro (1997) [45] for example).
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Figure 9: Comparison of the limiter J shown in Fig. 7 (full circle • and square � symbols) to the Superbee limiter
(diamond ⋄ and triangle △ symbols) for the simple transport of a Heaviside function ψ at prescribed velocity.
The advection speed is 100 m.s−1. The dashed lines represent the initial condition. The full lines represent the
exact solution. The left column displays the results with gradients computed with the least squares method (Eq.
(5.5)) and the right column with the upwind-downwind formulas (Eq. (5.6)). Final time: t ≈ 4 ms. Meshes: 100
cells (top), 1000 cells (middle), 10, 000 cells (bottom). CFL = 0.8.

When the upwind and downwind formulas (Eq. (5.6)) are used with the Superbee limiter,
discontinuities are captured with four points (results of the right column of Fig. 9) while the
first-order TVD method (option J of Fig. 8) requires two points only.

However, multi-slope computation as Eq. (5.6) is inappropriate for unstructured meshes.
The least squares method (Eq. (5.5)) is convenient for unstructured meshes but the numerical
diffusion is excessive as seen in Fig. 9. The present limiter captures the discontinuities with the
same amount of cells whether the least squares method (Eq. (5.5)) or the upwind-downwind
formulas (Eq. (5.6)) are used. This is a major feature as only two mesh points are required to
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capture the discontinuities for all mesh resolutions.
The next test (Fig. 10) uses a 100-cell mesh and a longer simulation time. The final time is

about 10 times longer than the previous tests and CFL numbers of 0.8 and 0.1 are considered
with gradients computed with the least squares method (Eq. (5.5)) and the upwind-downwind
formulas (Eq. (5.6)). The boundary conditions are periodic.
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Figure 10: Comparison of the limiter J shown in Fig. 7 (full circle • and square � symbols) to the Superbee
limiter (diamond ⋄ and triangle △ symbols) for the simple transport of a Heaviside function ψ at prescribed
velocity (100 m.s−1). The dashed lines represent the initial condition. The full lines represent the exact solution.
The graphs at top display the results with gradients computed with the least squares method (Eq. (5.5)) and
the graphs at bottom with the upwind-downwind formulas (Eq. (5.6)). Final time: t ≈ 44 ms. Mesh: 100 cells,
CFL = 0.8 (left figures) and CFL = 0.1 (right figures).

The present limiter handles both high and low CFL numbers. Again the number of points
required to capture the discontinuities remains the same for both gradient computation methods
(least squares method and downwind formulas) whereas the Superbee limiter presents signifi-
cantly different results.

The Superbee limiter lies along the upper boundary of the second-order TVD region of Sweby.
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This region is able to deal with discontinuities as well as smooth solutions. However, when dealing
with discontinuities only, according to the numerical experiments, the upper boundary of the
first-order TVD region seems to be the actual restriction and provides significant improvement
over the second-order TVD region.

Similarly to Sweby who introduced a class of flux limiters which include both extremes of
the upper and lower boundaries of the second-order TVD region with the limiter,

θ (φij) = max
[

0, min(βφij, 1), min(φij, β)
]

, 1 ≤ β ≤ 2, (5.7)

we propose the following limiter that includes the upper boundaries of the first and second order
TVD regions,

θ (φij) = max
[

0, min
[

2, 2φij, max
[

min(2φij , β), min{(2−β)φij+2(β−1), φij}
]

]]

, 1 ≤ β ≤ 2.

(5.8)
Both limiters (5.7) and (5.8) are depicted in Fig. 11. Many other compressive limiters can
be considered according to the numerical experiments. The present limiter is proposed here as
Eq. (5.8) is convenient. For β = 1, it reduces to the upper boundary of the second-order TVD
region corresponding to the Superbee limiter. For β = 2, it increases to the upper boundary
of the first-order TVD region. Because of this feature, the proposed limiter could be named
“Overbee”. The parameter β corresponds to the height of the constant region of the present
limiter and controls the amount of artificial compression while remaining TVD as the constraint
0 ≤ θ(φ) ≤ minmod(2, 2φ) is satisfied.

In the specific case β = 2, this formulation simplifies to,

θ (φij) = max
[

0, min
[

2φij, 2
]

]

. (5.9)

As shown latter, this limit is of particular interest.

Two-dimensional transport

Two-dimensional computations are now considered. In the following, the previously devel-
oped limiter (5.8) is used with β = 2. The limiter then lies along the boundary of the first-order
TVD region. β = 2 will be used in all the following tests as it corresponds to the maximum
value of interest and to the maximum amount of artificial compression while remaining TVD.

The various tests are schematically depicted in Fig. 12. In this section, 2D-Cartesian-
structured meshes are used.

The first test deals with the rotation of Zalesak’s disk. Inside the disk, function ψ is set to
1 and 0 outside. With 2D Cartesian grids made of squares, the least squares method (Eq 4.2)
reads,

∇ψij =

( ∂ψ
∂x
∂ψ
∂y

)

ij

=

( 1
2△x

(ψi+1,j − ψi−1,j)
1

2△y
(ψi,j+1 − ψi,j−1)

)

. (5.10)

Figure 13 compares the results obtained with the Superbee limiter and the previously developed
function with CFL number of 0.5. The discontinuity is clearly sharpened with the new limiter

25



0 0.5 1 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

φijφij

θ(
φ
ij
)

θ(
φ
ij
)

β

β

β

β
1

β
β
2

Figure 11: Graphical representation of the proposed limiter (5.8) on the left and Sweby’s limiter (5.7) on the
right. Both limiters use β = 1.5 for this example. The dark gray shaded region represents the region of first-order
TVD methods (left figure). The light gray shaded region represents the region of second-order TVD methods
(left and right figures).

0.35m

0
.1
5
m

0.08m

0.35m

1m

1
m

0.1m

0.8m

0
.1
m

0
.2
m

1m

1
m

x

y

Figure 12: Schematic representation of the initial conditions of simple transport tests on a two-dimensional-
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whereas the least squares method with Superbee limiter produces much more diffusion. Figure
13 shows the computed profile of function ψ along x at given y = 0.65 m. About 4 cells are
needed to capture the discontinuity with the new limiter whereas Superbee needs about 9 cells.

The next test examines the advection of a square profile along a diagonal. As previously,
inside the square, function ψ is set to 1 and 0 outside. For this test, as a consequence of
transport along diagonal direction, the influence of the indirect neighbors is studied in addition
to the direct ones. As the mesh is made of squares, the stencil used in the computation of
gradients is depicted in Fig. 14.

Gradient computation with the least squares method reduces to,

∇ψij =

( ∂ψ
∂x
∂ψ
∂y

)

ij

=

( 1
6△x

(ψi+1,j + ψi+1,j−1 + ψi+1,j+1 − ψi−1,j − ψi−1,j+1 − ψi−1,j−1)
1

6△y
(ψi,j+1 + ψi+1,j+1 + ψi−1,j+1 − ψi,j−1 − ψi+1,j−1 − ψi−1,j−1)

)

.

(5.11)
The results are given in Fig. 15 with CFL = 0.5. Again the least squares method with the
conventional Superbee limiter provides a much more diffused discontinuity than the developed
new limiter.

Diagonal transport induces distortions when only the direct neighbors are used in the gradient
computation via Eq. (5.10). The present limiter does its part nonetheless. This drawback
is linked to the mesh geometry and the advection direction. It can hardly be seen when the
conventional Superbee limiter is used as the square is quite diffused. Nevertheless, this drawback
is fixed when the indirect neighbor cells are used in addition via Eq. (5.11). The square keeps
its shape and remains sharp. For this example, as the mesh structure and the test case itself are
simple, the addition of the indirect neighbors has negligible extra CPU cost.

We now have in hands a simple MUSCL type method to transport accurately discontinuities
with limited diffusion, independent of time and CFL.

6. Coupling with the diffuse interface formulation

The aim of this section is to use the previously developed limiter to sharpen interfaces in
the diffuse interface formulation (2.4)-(2.6). However, because it goes beyond the second-order
region of TVD methods (Fig. 4) this limiter fails with continuous waves. Therefore, interfaces
have to be detected, and the “Overbee” limiter has to be used at interfaces only.

At interfaces, pressure and velocity must be invariant while volume fractions must be as
sharp as possible. Near interfaces, the pressure and velocity gradients are very weak but the
density gradient is not. To avoid oscillations resulting from bad limiter combinations, all flow
variables are computed with zero gradient at interfaces, except volume fractions. It is therefore
important to detect interfaces and use a specific procedure in corresponding cells.

To this end, an interface indicator is developed. The interfaces are detected with the help of
the volume fractions as follows,

αnkα
n
j > ǫ, and j 6= k. (6.1)
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Figure 13: Comparison of the Superbee limiter (left) and the new limiter (right) with β = 2. Rotation of
Zalesak’s disk with the situation depicted in Fig. 12. Eight values of isocontours of ψ are displayed within the
range [0.1-0.9] in both top graphs. The results are given at t ≈ 6.3 s (one full rotation). The graphs at bottom
show the ψ profile versus x at a given y = 0.65 m. The solid lines represent the initial conditions. The full
diamond and circle symbols represent respectively the results provided by Superbee (left) and “Overbee” (right).
Cartesian mesh: 100× 100 , CFL = 0.5.
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mesh, for gradient computation. The cell of interest (i, j) is represented as the shaded cell. On the left, only
the direct neighbors are represented as the darker cells. On the right, the indirect neighbors are represented in
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It consists in using the products of phase volume fractions that correspond to Gaussian functions
centered at interfaces. According to the numerical experiments, using ǫ ≃ 10−2 seems to be a
fair choice. Another efficient filter can be considered as well,

|αnk(i)− αnk(l)| > ǫ, with l = 1, · · · , N (6.2)

where N is the number of neighboring elements and i denotes the present cell. Eq. (6.2) allows
to deal with variables presenting bounds different from 0 and 1 unlike filter (6.1). In the rest of
the paper, filter (6.1) is used only.

7. Validations

The “Overbee” limiter is now used in two-phase flow computations. The capabilities of the
present method are first highlighted on one-dimensional tests. The SG EOS (2.9) is used in
this paper with the parameters given in Table 1. Note that with the SG EOS, the co-volume
parameter bk is not used and is set to 0.

Fluid water air gas krypton detonation products

γ 4.4 1.4 1.4 1.67 3
p∞ (Pa) 6. 108 0 0 0 0

Table 1: Stiffened gas coefficients of the tested fluids.

Advection problem

First let us consider a pure advection problem. A column of liquid water is advected at
velocity 100 m.s−1. The initial density of liquid water is set to 1000 kg.m−3. The second fluid
is air with initial density set to 1 kg.m−3. The atmospheric conditions are considered (p = 0.1
MPa). Nearly pure fluid conditions are initially used as αair = 10−6 in the liquid phase and
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Figure 15: Comparison of the Superbee limiter (left column) and the new limiter (right column) with β = 2.
Advection of a square along the diagonal with the situation depicted in Fig. 12. The results at top are computed
with gradients based on direct neighbors. At bottom, the intermediate neighbors are used in addition. Eight
values of isocontours of ψ are displayed within the range [0.1-0.9] in all graphs. The results are given at t ≈ 7 ms.
Cartesian mesh: 200 × 200, CFL = 0.5. Direct and intermediate neighbors are mandatory to keep the correct
shape, at least for this example.
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αwater = 1 − 10−6 in the gas phase. The results are given in Fig. 16 at time t ≈ 5 ms. The
Superbee flux limiter (Eq. (5.7) with β = 2) is used in the flow solver except regarding the
volume fractions computed alternatively with the “Overbee” limiter (Eq. (5.8) with β = 2).
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Figure 16: Comparison of the present interface-sharpening method versus the conventional method (without
sharpening) with Superbee limiter. Advection of a liquid water column with coupling of flow model (2.4)-(2.6)
and volume fraction sharpening. The advection speed is 100 m.s−1. The dashed lines represent the initial
conditions: p = 0.1 MPa, ρwater = 1000 kg.m−3, ρair = 1 kg.m−3, u = 100 m.s−1. The diamond symbols ⋄
represent the solution with the Superbee limiter used for all flow variables. The full circle symbols • represent
the solution when interface sharpening is used in addition (Eq. (5.8), β = 2). The full lines represent the exact
solution. Final time: t ≈ 5 ms. Mesh: 100 cells. CFL = 0.8.

This test is the analogue of the previous advection of a Heaviside function ψ. Figure 16 shows
that the mixture pressure and velocity are free of spurious oscillations. The volume fractions
and the mixture density are clearly sharpened compared to the least squares method with the
conventional Superbee limiter.

It appears that volume fraction profiles are slightly more diffused compared to the previous
advection tests. The CFL being now based on sound speed, much more time steps are required
to reach the final simulation time, resulting in extra diffusion.
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In the following, the method is tested on situations involving both continuous and discontin-
uous waves in addition to interfaces.

Liquid-gas shock tube test

A two-phase shock tube test is now considered. It consists in a one-meter long tube containing
two chambers separated by an interface at the location x = 0.75 m. Each chamber contains
nearly pure fluid. The liquid is water with initial density ρwater = 1000 kg.m−3 and the initial
density of the gas phase is ρgas = 10 kg.m−3.

The left chamber contains a very small amount of gas, αgas = 10−6 and the initial pressure
is set to 1 GPa. The right chamber contains the same fluids but the volume fractions are
reversed. The initial pressure is set to 0.1 MPa. In both chambers, the fluids are initially at
rest. The results are shown in Fig. 17 at time t ≈ 240 µs with a 200-cell mesh. A close-up
view of the interface capture is displayed in Fig. 18. The Sweby flux limiter (Eq. (5.7)) is used
in the hydrodynamic solver with β = 1.35, except with respect to the volume fractions, when
sharpening is active. When the interface is detected, Eq. (5.8) is used with β = 2.

The mixture density and volume fraction graphs show that the interface is sharpened with
the new limiter. In addition, Fig. 18 shows that the pressure and velocity are unchanged in the
interface region.

8. Illustrations on unstructured meshes

In the following, the capabilities on the present limiter are highlighted with two-phase flow
computations on unstructured meshes.

Advection

This test consists in advecting a liquid water column initially shaped as Zalesak’s disc, into
surrounding air. The numerical domain is a square of 1 m by 1 m. The initial conditions are
schematically represented in Fig. 19. A mesh made of about 50.000 triangles is used. The
initial density of liquid water and air are set to 1000 kg.m−3 and 1 kg.m−3 respectively. The
atmospheric conditions are considered (p = 0.1 MPa). Nearly pure fluid conditions are initially
used as αmin = 10−6 and αmax = 1− 10−6. The advection speed is 100 m.s−1 in both directions
(x, y). Figure 20 displays the results obtained with the Superbee limiter (Eq. (5.7), β = 2)
and the new function (Eq. (5.8), β = 2). The isocontours of volume fractions are presented,
showing enhancements of the present method. For this test, as a consequence of transport along
diagonal direction, the influence of the indirect neighbors is studied in addition to the direct ones.
When only the direct neighbors are considered, Zalesak’s disc tends to become asymmetric. This
drawback is lowered when the indirect neighbors are used in addition. For this test, including
the indirect neighbors required additional computational cost of about 8% with a commercial
computer using 8 cores and MPI architecture. Figure 21 shows the cells activated by filter (6.1),
where the new limiter is active. About 4 cells are detected with (6.1) and the interface is always
sharper than this zone with the new limiter.
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Figure 17: Liquid-gas shock tube computation with and without interface sharpening. The dashed lines represent
the initial conditions: pleft = 1 GPa, pright = 0.1 MPa, ρwater = 1000 kg.m−3, ρgas = 10 kg.m−3, uleft = uright =

0 m.s−1, αleft
1

= 1 − 10−6, αright
1

= 10−6. The diamond symbols ⋄ represent the solution with Sweby’s limiter
(Eq. (5.7), β = 1.35). The full circle symbols • represent the solution when interface sharpening is used in
addition (Eq. (5.8), β = 2). The full lines represent the exact solution. Final time: t ≈ 240 µs. Mesh: 200 cells.
CFL = 0.5.
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Figure 19: Schematic representation of the various two-dimensional tests. The figure on the left represents an
advection test of a liquid water column shaped as Zalesak’s disc. Non-reflecting boundary conditions are used
for this test. The figure in the middle represents a shock tube test where the interface is accelerated by a shock
wave moving towards a krypton bubble. The krypton bubble is initially located at x = 0.26 m and y = 0.04
m. Wall boundaries are considered except for the right one considered as non-reflecting. The figure on the right
represents an underwater explosion test. The boundaries are non-reflecting.

Air-krypton-shock-interaction

This test addresses both interfaces and shocks. As pressure and density gradients are not
collinear, vorticity appears through Richtmyer Meshkov instabilities [56], [57]. In this section
a bubble filled with krypton is considered. The surrounding gas is air. The SG parameters
are given in Table 1. The geometry is schematically represented in Fig. 19 and the initial
conditions are given in Table 2. Those conditions consist in a low pressure chamber filled with
air at atmospheric pressure. The second chamber is filled with shocked air, resulting in the
propagation of a left facing shock at Mach number M ≈ 1.5. The Mach number is defined
as M = σ/c0 with σ the speed of the incident shock wave and c0 the speed of sound in the
surrounding air at atmospheric conditions. The bubble of krypton at atmospheric conditions is
initially set in the low pressure chamber. Again, nearly pure fluid conditions are initially used
as αmin = 10−6 and αmax = 1− 10−6.

Location Density (kg.m−3) Pressure (Pa) ux (m.s−1) uy (m.s−1)

Air (post-shock) 2.35 252, 840 −230.3 0
Air (pre-shock) 1.29 101, 325 0 0

Krypton 3.506 101, 325 0 0

Table 2: Initial conditions of the interface-shock interaction test.

Figure 22 presents the corresponding computed results at various times. A mesh of about
120, 000 triangles is used. The Superbee limiter (Eq. (5.7), β = 2) is used in the hydrodynamic
solver with both computations (conventional and sharpening). In this flow configuration, the
bubble is filled with krypton which is heavier than the surrounding air (ρkrypton = 3.506 kg.m−3

and ρair = 1.29 kg.m−3). The gas properties (densities and acoustic impedances Z = ρc) are
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Figure 20: Comparison of the present interface-sharpening method (right graphs) versus the Superbee limiter
(left graphs). Two dimensional advection test of Zalesak-disc shaped liquid water column. The results at top are
computed with gradients based on direct neighbors. At bottom, the intermediate neighbors are used in addition.
Eight values of the volume fraction isocontours are displayed within the range [0.1-0.9] in all graphs. The initial
conditions are p = 0.1 MPa, ρwater = 1000 kg.m3, ρair = 1 kg.m3, ux = uy = 100 m.s−1. Final time: t ≈ 7 ms.
Mesh ≈ 50, 000 triangles. CFL = 0.8.
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Figure 21: Two dimensional advection test of Zalesak-disc shaped liquid water column of Fig. 20 (computation
with indirect neighbors in addition to the direct ones). The figure on the left represents the cells computed by
the interface indicator (Eq. (6.1)) (not to be confused with the interface cells required to capture the interface).
On the right, cells of pure water are shown. t ≈ 0.7 ms. Mesh ≈ 50, 000 triangles. CFL = 0.8.

strongly different. In addition to these differences, combination of pressure and density gradients
induces vorticity as shown in Fig. 22. However, at first instants, these effects are dominated
by compression ones. During that stage, the transmitted shock wave through krypton is slower
than the incident one through air. At further instants, vorticity effects develop and become
dominant. As shown in Fig. 22, filaments are created initially at top and bottom of the bubble
in the flow direction. Then a vortex ring issued from their rolling-up gets formed and grows
with time. For more details on the physics of this interaction, see [58] for instance.

The benefit of the present method is clearly seen in Fig. 22. The mixture zone is much
reduced at the interface when the volume fraction computation is done with the “Overbee”
limiter (Eq. (5.8), β = 2). The numerical gain is especially visible at the rolling regions of
the krypton bubble. As time goes on, the numerical dissipation gets more intense with the
conventional method, while the interface and the rolls are clearly distinguishable with the new
method. Figure 23 presents the cells detected by the interface indicator (Eq. (6.1)). Again,
about 4 cells are detected with (6.1) and the interface is always sharper than this zone with the
new limiter. The additional neighbors provide no significant differences for this test and require
additional CPU cost of about 8% (distributed memory parallel implementation using 8 cores).

Underwater explosion

The computational test that follows corresponds to a high pressure gas bubble settled un-
derwater, close to the water-air surface. Such a situation occurs when an underwater explosion
bubble reaches the surface. Relevant literature on the subject may be found in Holt (1977)
[59], Grove and Menikoff (1990) [60]. The detonation is treated as a constant volume explosion
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Figure 22: Comparison of the present interface-sharpening method (Eq. (5.8), β = 2) versus Superbee limiter
(Eq. (5.7), β = 2). The test consists in a krypton-bubble/air configuration where a left facing shock wave moving
at M = 1.5 interacts with the interface. Eight values of the volume fraction isocontours are displayed within the
range [0.1-0.9] in all graphs. The left column corresponds to the results with the Superbee limiter and the right
column with the present compressive limiter. The results are shown at times: t ≈ 0.013 ms, t ≈ 0.155 ms and
t ≈ 0.297 ms. The reference time t0 = 0 corresponds to the moment when the shock wave interacts with the
interface. Mesh ≈ 120, 000 triangles, CFL = 0.5. Only the direct neighbors are used for this test.
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Figure 23: Krypton bubble shock interaction test of Fig. 22. The figure on the left represents the cells computed
by the interface indicator (Eq. (6.1)) (not to be confused with the interface cells required to capture the interface).
On the right, the krypton bubble cells are displayed. The results are given at time: t ≈ 0.155 ms. The reference
time t0 = 0 corresponds to the moment when the shock wave interacts with the interface. Mesh ≈ 120, 000
triangles, CFL = 0.5. Only the direct neighbors are used for this test.

resulting in high pressure gas products at high density. Liquid water surrounding the charge
is considered initially at atmospheric conditions. The air above is at rest and at atmospheric
conditions as well. The initial situation is shown in Fig. 19 and the initial data are summarized
in Table 3. Three different fluids are considered with thermodynamic data given in Table 1.
Near pure fluid conditions are initially used as αmin = 10−6 and αmax = 1− 2.10−6.

Material Density (kg.m−3) Pressure (Pa)

Air 1.225 101, 325
Detonation products 1250 109

Water 1000 101, 325

Table 3: Initial conditions of the underwater explosion test.

Due to the high pressure differential between detonation products and surrounding water, a
strong shock is emitted into the water while an expansion wave propagates into the gas. The
liquid-gas interface is set to intense motion and the bubble deforms. Another wave diffraction
occurs at the liquid-air interface, resulting in the motion of the two liquid-gas interfaces. The
bubble grows intensively resulting in a thin liquid layer appearance between the air and the
detonation products. This layer is stretched during time evolution and finally breaks into several
fragments.

Phase transition has not been considered in these computations, nor surface tension and
viscosity. Fragment size selection is thus numerical. However, the method is able to fragment
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a liquid film subjected to tension. Indeed, if the single phase Euler equations were solved, the
pressure would be negative due to liquid tension and discrepancy with the interface condition
where air is present (at positive pressure) would appear. With the present diffuse interface
formulation (Eqs. (2.4)-(2.6)), thanks to the small amount of air present in the liquid, sub-scale
bubbles grow during pressure relaxation, maintaining pressure positivity and resulting in the
dynamic appearance of new interfaces, which result in fragments formation. Such break-up is
done automatically as a result of stretching [18]. Such simplified modeling of cavitation is in
principle representative enough in explosion situations such as the present case.

Figure 24 shows the isocontours of the liquid water volume fraction. The mesh consists
in approximately 150, 000 triangles. The Minmod limiter (Eq. (5.7) with β = 1) is used in
the hydrodynamic solver for both methods (conventional and sharpening). When an interface is
located via filter (6.1), either the Superbee or the “Overbee” function is used for volume fraction
computation. The improvement with the present method is clearly visible. At the end of the
simulation, the break-up of the liquid water layer is barely seen with the conventional Superbee
limiter whereas the fragmentation process is clearly observable with the new limiter. Figure 25
presents the cells detected by filter (6.1). Again, about 4 cells are detected with (6.1) and the
interface is always sharper than this zone with the new limiter. The additional neighbors provide
no significant differences for this test and require additional CPU cost of about 8% (distributed
memory parallel implementation using 8 cores).

9. Conclusions

A simple interface sharpening method bas been built, especially devoted to the computation
of compressible two-phase flows. The method has been presented in the context of Saurel et
al. (2009) [18] diffuse interface model but can be implemented in the models of Allaire et al.
(2002) [15], Massoni et al. (2002) [16], Pelanti and Shyue (2014) [19] and many others. The
method relies on a specific limiter for the volume fraction computation in MUSCL type schemes.
This limiter is TVD and deals with discontinuities only as it is compressive but diffusive enough
to behave satisfactorily in multi-D computations. Insertion of this limiter into diffuse interface
formulations requires detection of interfaces. A simple indicator function is used for this aim.
The developed algorithm thus uses two main ingredients,

• localization of interfaces via an interface indicator,

• volume fraction gradient limitations with the “Overbee” limiter (a first-order TVD limiter).

Computational examples have shown capabilities of the present method. It is able to capture
interfaces in two mesh points, improving significantly quality of the results, to the price of slight
modifications. The present work has been developed in the context of two-phase flows with
inmiscible fluids. The next step will be to address interfaces with phase transition [61], [62]. A
reduced version is given in AppendixA for the computation of contact discontinuities with the
Euler equations, in the single phase limit.
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Figure 24: Comparison of the present compressive limiter (graphs on the right, Eq. (5.8), β = 2) versus the
Superbee limiter (graphs on the left, Eq. (5.7), β = 2). Underwater explosion test. Eight values of the volume
fraction isocontours are displayed within the range [0.1-0.9] in all graphs. The results are shown at times: t ≈ 1.8
ms, t ≈ 22 ms and t ≈ 29 ms. Mesh ≈ 150, 000 triangles, CFL = 0.1. Only the direct neighbors are used for this
test.
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Figure 25: Underwater explosion test of Fig. 24. The figure on the left represents the cells computed by the
interface indicator (Eq. (6.1) (not to be confused with the interface cells required to capture the interfaces).
On the right, the liquid water cells are displayed. The results are given at time: t ≈ 1.2 ms. Mesh ≈ 150, 000
triangles, CFL = 0.1. Only the direct neighbors are used for this test.
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AppendixA. Sharpening contact discontinuities in single phase flows

It is interesting to examine the capabilities of the new limiter to sharpen contact disconti-
nuities in single phase flows. The Euler equations (A.1) are thus considered with the ideal gas
equation of state (A.2).



























∂ρ

∂t
+ div(ρu) = 0,

∂ρu

∂t
+ div

(

ρu⊗ u+ pI
)

= 0,

∂ρE

∂t
+ div ((ρE + p)u) = 0,

(A.1)

p(ρ, e) = (γ − 1) ρe. (A.2)

The new limiter is unable to compute shocks and smooth profiles, such as expansion waves. The
main issue is thus to detect contact discontinuities only. This is done with the following filter
(A.3):















|ρn+1 − ρn|

ρn
>ǫ,

|pn+1 − pn|

pn
<ǫ

(A.3)

where n and n+1 denote two successive time steps. This “contact discontinuity detection” can
be done with the predicted variables of the MUSCL scheme. When the contact discontinuity
is detected, the second order process is repeated on the cells of interest with zero gradients for
variables u and p while the density gradient is limited by “Overbee”.

A typical computational example is shown in Fig. A.26 with a 1D shock tube. The small
parameter is set to ǫ = 10−3 leading to three contact surface cells detected between x = 0.58 m
and x = 0.60 m.
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Figure A.26: Air shock tube computation with and without contact surface sharpening. The dashed lines
represent the initial conditions: pleft = 2 bar, pright = 1 bar, ρleft = 2 kg.m−3, ρright = 1 kg.m−3, uleft =
uright = 0 m.s−1. The full circle symbols • on the left graph represent the solution with Superbee limiter. The
full circle symbols • on the right graph represent the solution when contact surface sharpening is used in addition.
The full lines represent the exact solution. Final time: t ≈ 1 ms. Mesh: 100 cells. CFL = 0.8.
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